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Climate Impacts on Chinese Corn Yields: A Fractional 
Polynomial Regression Model 

Baojing Sun  and G. Cornelis van Kooten 

Abstract  

In this study, we examine the effect of climate on corn yields in northern 

China using data from ten districts in Inner Mongolia and two in Shaanxi province. A 

regression model with a flexible functional form is specified, with explanatory 

variables that include seasonal growing degree days, precipitation, technical change 

and dummy variables to account for regional fixed effects. Results indicate that a 

fractional polynomial model in growing degree days explains variability in corn 

yields better than a linear or quadratic model. Among the tested models, the other 

factors show steady effects on corn yields. Growing degree days, precipitation in 

July, August and September, and technical change are important determinants of 

corn yields. 

 
Keywords: Corn yields; fractional polynomial regression 

1. Introduction 

Because China accounts for nearly 20 percent of global population, it is 

important to study how climate affects crop yields in that country. China is the 

second largest maize producing country in the world after the United States (FAO 

2010), but its agriculture is labor-intensive and highly vulnerable to weather and 

other risks. Yet few studies have examined the impact of climate factors on crop 

yields in China, partly because data are scarce, difficult to obtain and of varying 
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quality. Nonetheless, as a basis for understanding current and future climate risks, it 

is important to increase knowledge about the relationship between existing weather 

records and crop yields.  

Many studies have investigated climate effects on crop yields in various 

regions using different methods, but most have employed simple correlations or 

relationship that is either linear or quadratic (e.g., Williams 1972; Almaraz et 

al.2008；Chen et al. 2011). A recent study by Chen et al. (2011) examined the 

impact of weather on corn yields in three provinces (Heilongjiang, Jilin and Liaoning) 

located along the northeast coast of China. The authors found that the minimum 

temperature anomalies for May and September had a strong positive effect on corn 

yield, where yield in a given year was also measured as an anomaly from average 

yield over the 44 years (1965-2008) for which data were available. Separate 

regressions were estimated for each province, and for the three provinces combined, 

with intercept terms included only in regressions for Heilongjiang and Liaoning 

provinces and not for Jilin province or the aggregated regression. Not unexpectedly, 

temperatures in May had a stronger impact on yield than temperatures in 

September.  

Chen et al. (2011) sought only to find the climate factors correlated with corn 

yields. They did not attempt to provide agronomic insights into their results. Corn is 

planted in early May and a high minimum May temperature is desirable in their 

study region; moisture is not a limiting factor in May and temperatures are not yet 

hot enough to adversely impact the early growth stage. Corn is harvested during 

September (with dates varying according to latitude); since high minimum 
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temperatures are indicative of frost-free days, higher minima contribute to higher 

quality harvests and yields.  

In this paper, we extend the work of Chen et al. (2011) in several directions. 

First, we examine a partially adjacent region to the west – the provinces of Inner 

Mongolia and Shaanxi, which are part of the main corn growing regions of China 

(Figure 1). These provinces respectively accounted for 8.3% and 3.0% of China’s 

total corn production in 2010 (China Statistical Yearbook 2011). Thus, although our 

results are not directly comparable to those of Chen et al., they nonetheless provide 

a point for comparison. Second, we employ district level data for our two provinces 

– ten districts in Inner Mongolia and two in Shaanxi. Because our data are 

disaggregated to a greater extent than those used by Chen et al., we only have 

district level data for the period 1989-1999 (11 years) for Inner Mongolia and 1989-

2001 (13 years) for Shaanxi. However, because we also use disaggregated weather 

data and panel regression, our regression models have 136 observations compared 

to only 44 observations used by Chen et al. Third, our data only cover the period 

following the opening up of the economy. While the previous research did not test 

for potential structural breaks in yields associated with, for example, opening up of 

the economy, we suspect that such a break might have occurred at or prior to 1989 

(see Brown 2009, pp. 444-452) and perhaps again around 2001/2002 when China 

joined the World Trade Organization (WTO).  
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Figure 1: Study area showing 12 districts in two provinces 

Finally, there is no reason to think that crop yields are a linear or quadratic 

function of climate variables. Rather, the relationship is more complicated. For 

example, Schlenker and Roberts (2006) have shown that estimation using only 

average temperatures could result in a biased relationship between temperature 

and yields. Indeed, they specify a highly nonlinear relationship and employ daily 

temperature information (Schlenker and Roberts 2006, 2008). These aspects are 

discussed below. 

2. Methods 

Schlenker and Roberts (2006, 2008), hereafter S&R, make the case that crop 

yields depend on climate factors in nonlinear fashion and that crop growth 

throughout the growing season is cumulative. That is, if soil moisture availability is 

not a constraint, then crop growth is not specifically dependent on one or several 
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periods of warm weather but, rather, a function of the total sum of warm days 

during the growing season. However, extreme heat (temperatures above 36oC, say) 

may have an adverse impact on crop yield. Likewise, lack of soil moisture during the 

growing season may negatively impact crop yields.  

S&R begin by postulating that relative plant growth is cumulative over time 

and that yield is directly dependent on plant growth. Let T represent temperature 

and yjt represent the log of plant growth in region j in year t. Then, assuming plant 

growth is given by g(T), the natural logarithm of crop yield is determined by the 

following relationship: 

yj,t = ∫ 𝑔(𝑇)𝑇
𝑇  Φj,t(T) dT + ∑i αi zi,j,t + Dj + εj,t, (1) 

where 𝑇 and 𝑇 refer to the upper and lower bounds that observed temperatures can 

take; Φj,t(T) is the cumulative distribution function of temperatures (heat) over the 

growing season in region j during year t; zi,j,t are i other factors (precipitation, 

technology, fertilizers, etc.) that affect crop growth in region j during t; αi are 

parameters to be estimated; Dj are time-invariant region-fixed effects; and εj,t ~ 

N(0,σj,t) are identical independently distributed error terms.  

The issue of concern relates to the growth function. S&R (2006) employ a 

mth-order Chebychev Polynomial evaluated at the m midpoints of the intervals 

between 𝑇 and 𝑇. Unfortunately, while S&R have 87,619 observations on corn yields 

for the period 1950-2004, our data are severely limited as discussed below. When 

observations are limiting, S&R (2008) recommend that, at the very least, growing 

degree days during the growing season and the square of growing degree days be 
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used as explanatory variables in the regression model instead of temperatures per 

se. The quadratic function can capture at least one nonlinear aspect, although they 

find many more nonlinearities using midpoints of intervals or dummy variables 

representing number of days that temperatures fall within certain boundaries 

during a growing season. As noted, they are afforded this luxury by their large data 

sets.  

Temperature is the primary variable of interest because precipitation is 

assumed not to be constraining. Nonetheless, precipitation may be important at 

certain times of the year. For example, too much rainfall in September may delay 

harvests, reduce grain quality, or even reduce overall yield. Likewise, if fields are too 

wet in fall, harvesting may be delayed and yields may actually decline due to decay; 

or if fields are too wet in spring the delay in planting leads to reduced exposure to 

heat and lower yields according to relation (1). In contrast to S&R, we consider 

precipitation effects for each month, rather than the growing season as a whole, and 

also consider quadratic effects of monthly precipitation as it is not obvious that the 

effect of precipitation on crop yield is linear. 

Because we employ growing degree days over the season (denoted by G) and 

not S&R’s mth-order Chebychev Polynomial to represent the effect of heat on crop 

yields, we adopt the method of fractional polynomials (Royston and Altman 1994) 

to model the nonlinear relation. The use of G and G2 as explanatory variables is then 

a special case of the more general mth-order fractional polynomial regression. 

Royston and Altman (1994) begin by defining a fractional polynomial of 

degree m written as: 
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fm(X; ξ, n) =  ξ0 + ∑ 𝜉𝑗𝑋(𝑛𝑗)𝑚
𝑗=1 , (2) 

where the parentheses on the power term on X signify the following transformation: 

𝑋�𝑛𝑗� = {  
𝑋𝑛𝑗  𝑖𝑓 𝑛𝑗 ≠ 0
𝑙𝑛𝑋 𝑖𝑓 𝑛𝑗 = 0  

For m=2 and n = {n1, n1}, we have the following: 

F2(X; ξ, n) = ξ0 + (ξ1 + ξ2) X(n1) (3) 

which is nothing more than a fractional polynomial of degree 1.  

Rewrite (3) as: 

f2(X; ξ, n) = ξ0 + ξ1 X(n1) + ξ2 X(n1) X(n2)–(n1) – ξ2 X(n1) + ξ2 X(n1) (4) 

Rearranging gives 

f2(X; ξ, n) = ξ0 + ξ1 X(n1) + ξ2 X(n1) (X(n2)–(n1) – 1) + ξ2 X(n1) (5) 

⇒    f2(X; ξ, n) = ξ0 + (ξ1 + ξ2) X(n1) + ξ2(n2–n1) X(n1) [(𝑋(𝑛2−𝑛1) − 1) (𝑛2 − 𝑛1⁄ )] (6) 

As n2 → n1, the last term in parentheses in (6) becomes lnX. Then, upon rearranging:  

f2(X; ξ, n) = ξ0 + (ξ1 + ξ2) X(n1) + ξ2(n2–n1) X(n1) lnX. (7) 

Letting ζ0= ξ0, ζ1= ξ1 + ξ2 and ζ2= ξ2(n2–n1), we can write (7) as  

f2(X; ξ, n) = ζ0 + ζ1 X(n1) + ζ2 X(n1) lnX. 

This can then be generalized in the same way to m> 2 (Royston and Altman 1994):  

fm(X; ξ, n) = ζ0 + ζ1 X(n1) + ∑ 𝜁𝑗𝑋(𝑛1)𝑙𝑛𝑋𝑗−1𝑚
𝑗=2 . (8) 

Notice that, much like a Taylor series expansion occurs about a particular 

point, the flexible functional form (7) is obtained by expanding about the power n1. 

This is clear from the way that expression (6) is derived. Therefore, we now 
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generalize the fractional polynomial function further:  

fm(X; ξ, nk) = ζ0 + ∑ �𝜁1,𝑘𝑋(𝑛𝑘) + ∑ 𝜁𝑗,𝑘𝑋(𝑛𝑘)𝑙𝑛𝑋𝑗−1𝑚
𝑗=2 �𝐾

𝑘=1 , (9) 

where the number of potential powers equals K. Essentially there are an infinite 

number of functions that can be considered, but, in practice, we limit ourselves to nk 

values that are integers between -2 and +3, with ±0.5 (1 √𝑋⁄  and √𝑋)  included, 

although higher powers are not ruled out.  

We illustrate the notation and method for identifying a regression model 

with several examples. Consider the fractional polynomial for variable X and let K 

denote powers of X and m the maximum number of terms of a particular power of X; 

in these examples we exclude an intercept term and terms involving other 

variables.1

f3(X; ξ, n3) = ζ0 + ζ1 1 √𝑋⁄  + ζ2 lnX + ζ3 X+ ζ4 X lnX + ζ5 X lnX2 (10) 

 For example, if K=3 and m=3, we would have three powers of X with one 

power having three terms, although there might be other powers of X whose terms 

do not exceed m. Consider {X, (-0.5, 0, 1, 1, 1)}. This leads to the following regression 

equation:  

Likewise, {X, (0, 0, 1, 1, 1, 2, 3)} leads to:  

F3(X; ξ, n4) = ζ0 + ζ1 lnX + ζ2 lnX2 + ζ3 X + ζ4 X lnX + ζ5 X lnX2 + ζ6 X2 + ζ7 X3 (11) 

One final note regards the definition of power zero, which is set equal to lnX as is 

clear from expressions (10) and (11). 

In the current application, the regression model is specified as  

                                                        
1 Although treated as a single variable in the text, explanatory variable X could just as well be 
considered a vector of variables.  
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yj,t = β0 + ∑ �𝛽1,𝑘𝐺𝑖,𝑡
(𝑛𝑘) + ∑ 𝛽𝑗,𝑘𝐺𝑖,𝑡

(𝑛𝑘)𝑙𝑛𝐺𝑗−1𝑚
𝑗=2 �𝐾

𝑘=1  + αi zi,j,t + Dj + εj,t (12) 

where the dependent variable, zi,j,t, αi and Dj were defined in conjunction with (1), 

and, importantly, the second term in square brackets in (12) disappears if m=1. In 

(12), the βs are parameters to be estimated and Gi,t refers to total degree days in 

region i during growing season t. Further, we explore only functional forms with 

powers n8 ∈ {-2, -1, -0.5, 0, 0.5, 1, 2, 3}, although S&R use a sixth power in their 

function but they do not employ fractions and natural logarithms. We could also 

employ higher polynomials and fractions, but we limit ourselves to those indicated. 

Finally, technological change can be represented by a time variable, while 

sales of farm chemicals (fertilizer, herbicides, pesticides) in a region might be used 

to represent other inputs that affect crop yield, assuming such data are available.  

3. Study Area and Data 

3.1 Study Area 

As already noted, the study area consists of 12 districts in two provinces in 

northwestern China (Figure 1). The northernmost district (Yulin/YL) in Shaanxi 

Province is adjacent to Inner Mongolia and constitutes 3.703 million hectare (ha), 

while the one (Yanan/YA) to the south is 4.307 million ha (Government website of 

Shaanxi Province, 2012); these are part of China’s Loess Plateau. Inner Mongolia 

spans three distinct Chinese administrative units – Northeast China, North China 

and Norwest China. Inner Mongolia is the third largest province, with a land base of 

118.3 million ha which accounts for 12.3% of China’s total land area. Of this, 53.4% 

of the land is plateau area, 20.9% is mountainous, and 0.8% is covered by water 
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(Government website of Inner Mongolia, 2012). Inner Mongolia consists of 12 

districts, although the current study only considers ten of these: From east to west, 

these are Hulunbeier (HL, 25.0 million ha), Xinganmeng (XA, 6.0 mil ha), Tongliao 

(TL, 6.0 mil ha), Chifeng (CF, 9.0 mil ha), Wulanchabu (WL, 5.5 mil ha), Huhehaote 

(HH, 1.7 mil ha), Baotou (BT, 2.8 mil ha), Eerduosi (EE, 8.7 mil ha), Bayannaoer (BY, 

6.4 mil ha) and Alashanmeng (AL, 27.0 mil ha).2

3.2 Data  

 

Corn yield data are obtained from Inner Mongolia Statistic Yearbook and 

Shaanxi Statistic Yearbook for 1989 to 1999, 1989 to 2001, respectively. Weather 

data are from Ecological Environment Database of the Loess Plateau. There are 50 

weather stations in Inner Mongolia for which data are available, but only 38 have 

weather data for a period comparable to the period for which yield data are 

available. In addition, records from seven weather stations in northern Shaanxi are 

available from the database. The corn growing season in the study area is from late 

April or early May to September. Therefore, we use weather records from May to 

September.  

While yield data are available beyond 2001, we lack the same richness of 

weather station data for the period after 2001. Further, China joined the WTO in 
                                                        
2 Data government websites of each respective districts (June 20th,  2012): 
http://www.hulunbeier.gov.cn/hlbewh/index.asp; 
http://www.xam.gov.cn/zwgk/zjxam/136359.htm; 
http://www.tongliao.gov.cn/gaik_text.asp?bid=194;  
http://www.chifeng.gov.cn/html/2010-05/259c01bd-a891-4b30-b6dc-40a01acefd31.shtml; 
http://www.wulanchabu.gov.cn/channel/wlcb/col6722f.html; 
http://www.huhhot.gov.cn/hhht/index.asp; http://www.baotou.gov.cn/html/btgl/dlqh.html; 
http://www.ordos.gov.cn/zjeedx/index.html; http://www.bynr.gov.cn/sqgk/; 
http://www.bynr.gov.cn/sqgk/; 
http://www.als.gov.cn/main/tour/survey/11012fc7-f4af-4589-817d-cadbde6f886a.shtml. 

http://www.hulunbeier.gov.cn/hlbewh/index.asp�
http://www.xam.gov.cn/zwgk/zjxam/136359.htm�
http://www.tongliao.gov.cn/gaik_text.asp?bid=194�
http://www.chifeng.gov.cn/html/2010-05/259c01bd-a891-4b30-b6dc-40a01acefd31.shtml�
http://www.wulanchabu.gov.cn/channel/wlcb/col6722f.html�
http://www.huhhot.gov.cn/hhht/index.asp�
http://www.baotou.gov.cn/html/btgl/dlqh.html�
http://www.ordos.gov.cn/zjeedx/index.html�
http://www.bynr.gov.cn/sqgk/�
http://www.bynr.gov.cn/sqgk/�
http://www.als.gov.cn/main/tour/survey/11012fc7-f4af-4589-817d-cadbde6f886a.shtml�
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2001, so world prices could be expected to have a greater influence on crop 

decisions. Likewise, we lack disaggregated corn yield data prior to 1989, which can 

also be considered a watershed year. Market liberalization in China began in the 

earnest after 1985 (Huang et al., 2009), which, along with other developments, 

suggests that 1989 marks a particular turning point for agriculture. Thus, it makes 

sense to consider only the period from the turning point that appears to have 

occurred in 1989 to China’s full entry into the world trading system. 

For each district, we use the weather stations in the district to determine the 

temperature and precipitation associated with the crop yields. If there is no weather 

station in a given district, then the temperature and precipitation data for the 

nearest weather station to the central point (centroid) of the district is used. If there 

is only one weather station in the district, the data from that station is used. Finally, 

if there are two or more weather stations in a district, a weighted average of the 

precipitation and temperature data are calculated for the centroid of the district. To 

make the required calculations, a Geographic Information System model was built 

using the Quantum GIS (QGIS) tool.  

After plotting district centroids, the distances between centroids and 

weather stations are measured using the GIS tool, and then the inverse of these 

distances are used as weighted coefficient to calculate weather readings. The 

following formula is used: 

Tj = � �𝑇𝑘,𝑗 + 0.006(𝑒𝑘,𝑗 − 𝑒𝑗)� (1 𝑑𝑘,𝑗)⁄
𝑛𝑗

𝑘=0
, (13) 

where Tj is the region j centroid temperature; Tk,j is the temperature reading and ek,j 
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is the elevation at weather station k in district j; there are nk weather stations in 

region j; ej is the mean elevation at the centroid of district j, which is used to 

eliminate elevation differences among stations in the district; 0.006 (measured in oC) 

corrects for elevation; and dk,j is the distance between the centroid in district j and 

weather station k, with ∑ 1 𝑑𝑘,𝑗⁄𝑛𝑗
𝑘=0 =1.  

We calculate growing degree days (G) over the growing season by taking the 

daily average temperature and subtracting from it 10oC. That is, we use the 

following relation to calculate growing degree days: 

Gj,t = Σd (Td,j,t – 10), d =1, 2, …, 153, (14) 

where Gj,t is growing degree days in region j in year t, and Td,j,t is the average 

temperature on day d in region j during the growing season of 153 days (May 

through September) in year t.  

For the response variables, we find that the distribution of unadjusted yields 

is closer to a normal distribution than either the distributions of the logarithm of 

yields or the square root of yields. Summary statistics for the variables used in the 

model are provided in Table 1. Correlations among monthly GDD are strong, as 

shown in Table 2; thus, to avoid multicollinearity problems, we employ only 

growing degree days accumulated over the entire growing season rather than 

separate monthly values. This is not the case for precipitation (Table 3), so monthly 

precipitation values are employed.  
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Table 1: Summary statistics for variables 
Variablea obs Mean Std. Dev. Min Max 
Yield 136 5600.47 2027.4 1020.0 11525.0 
G 136 1464.7 376.9 772.3 2589.5 
P5 136 24.6 20.1 0.05 121.5 
P6 136 47.9 31.8 1.1 135.0 
P7 136 94.1 51.6 4.2 216.1 
P8 136 77.0 45.4 6.5 202.8 
P9 136 32.8 23.2 1.1 147.4 
a G refers to growing degree days and P to precipitation, with subscripts indicating the month in the 
growing season (e.g., 5 = May) 

Table 2: Correlations of monthly GDD 

 
GDD5 GDD6 GDD7 GDD8 GDD9 

GDD5 1 
    GDD6 0.8666 1 

   GDD7 0.8505 0.928 1 
  GDD8 0.7434 0.8126 0.8531 1 

 GDD9 0.5799 0.6514 0.6621 0.7076 1 

Table 3: Correlations of monthly precipitation 

 
p5 p6 p7 p8 p9 

p5 1 
    p6 0.3736 1 

   p7 0.303 0.5463 1 
  p8 0.0959 0.2338 0.4556 1 

 p9 0.0929 0.307 0.3258 0.1707 1 
 

4. Results 

Estimation results are provided in Table 4 for linear, quadratic, and degree1 

to degree 4 terms of seasonal growing degree days (G); these are represented by 

models #1 through #6, respectively. In each of the models, dummy variables are 

used to capture district fixed effects. With some exceptions, unexplained differences 

among districts turn out to be important in explaining differences in corn yields 

across our study region.
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Table 4 Fractional Polynomial Regression in Different Degrees 
Explanatory 
Variable 

#1 
Linear 

#2 
Quadratic 

#3 
Degree 1 

#4 
Degree 2 

#5 
Degree 3 

#6 
Degree 4 

G-0.5 
 

 
 

60408.94*** 
  G-0.5×(lnG) 

 
 

 
33287.70*** 

  lnG 
 

 
    (lnG)2 

 
 

    (lnG)3 
 

 
    (lnG)4 

 
 

    G -2.19 3288.29 
    G2 

 
-1493.91 

    G3 
 

 -193.06 
 

6039.99*** -1974.18 
G3×lnG 

 
 

  
-12611.59*** 10197.98 

G3×(lnG)2 
 

 
  

6789.67*** -18602.66 
G3×(lnG)3 

 
 

   
10234.37 

P5 342.37 637.18 571.42 388.99 -234.23 -246.98 
P5

2 106.39 -89.98 -53.71 108.45 705.36 775.54 
P6 480.73 401.72 484.61 2.02 -233.89 -132.72 
P6

2 -64.52 26.673 -33.58 333.04 446.42 338.35 
P7 1419.79 2007.41** 1883.55** 1665.63* 1423.57 1856.59** 
P7

2 -423.41 -631.72 -591.04 -493.59 -406.24 -581.43 
P8 1464.12* 1516.56* 1524.75** 1731.73** 1735.88** 1594.18** 
P8

2 -669.36* -701.94* -696.52* -837.69** -850.59** -766.56** 
P9 -2315.02** -2284.59** -2314.33** -2144.39** -1986.00** -2053.41** 
P9

2 934.79 954.23 968.52 817.36 728.83 807.56 
time 2600.48*** 2441.46*** 2437.68*** 2543.33*** 2681.29*** 2545.65*** 
D2 -1781.37*** -1645.52*** -1655.57*** -1763.17*** -1894.96*** -1835.49*** 
D3 2154.00** 2866.55** 2594.52** 2737.50*** 3641.69*** 4910.06*** 
D4 3103.54** 4326.82*** 4066.10*** 4166.33*** 4545.68*** 5083.30*** 
D5 692.72 1015.91 989.87* 710.71 347.38 540.65 
D6 -834.02 -648.63 -639.69 -903.86 -1116.74* -927.03 
D7 398.08 574.87 581.33 394.49 137.583 243.88 
D8 -4073.59*** -2762.26** -3102.68*** -2217.60* -1440.22 -1307.12 
D9 -12.39 50.34 70.48 -68.95 -253.14 -234.28 
D10 -2172.75** -1044.17 -1291.66** -1277.07 -945.61 -456.07 
D11 -2517.58*** -2154.62*** -2167.15*** -2517.66*** -2914.38*** -2703.06*** 
D12 -32.61 324.81 293.71 77.37 -149.64 67.01 
cons 6392.88*** 6213.29*** 6203.66*** 6438.78*** 6756.99*** 6662.62*** 
R�2 0.776 0.795 0.788 0.803 0.824 0.832 
Deviance 2223.65 2208.53 2215.38 2201.18 2183.19 2176.56 
Res.SD 950.38 --- 918.66 875.86 823.50 807.36 
Dev.dif. 51.00 --- 42.73 28.53 10.54 3.91 
Prob 0.00 --- 0.00 0.00 0.08 0.22 
b  ***, ** and * indicate coefficients are significant at the 0.01, 0.05 and 0.1 levels, respectively; G (season 
growing degree days) ，precipitation and time are standardized in the regressions.
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For models # 1, #2 and #3 – models with linear, quadratic and degree-1 

terms of G – the estimated parameters are not statistically significant. As the degree 

on the growing degree days variable increases from 1 to 4 for models #3 through #6, 

the model fit improves as indicated by 𝑅�2 while the level of statistical significance of 

the deviance difference statistic equals 0.01 for model #1, and 0.01 and 0.10 for 

models #3 and #4, respectively; however, for model #1, the estimated parameters 

on G are not statistically significant. For model #6, the deviance difference is not 

statistically significant, which indicates that the function form leads to an ‘over 

fitting’ of the model; this is also indicated by the lack of statistical significance on 

any of the estimated parameters on G.  

The best models from a statistical standpoint are, therefore, #4 and # 5, 

which respectively explain 80.2% and 82.3% of the variation in corn yields. For 

model #4, fractional polynomial terms for growing degree days are combinations of  

1 √𝐺⁄  and   (1 √𝐺) × 𝑙𝑛 𝐺⁄ , with relationship shown in Figure 2. For model #5, 

fractional polynomial terms of growing degree days consist of G3, G3 × ln G, and G3 × 

(ln G)2, with this estimated function plotted in Figure 3.  

In models #4 and #5, higher levels of precipitation in July (#4) and August 

(#5) have a positive effect on corn yields, but too much precipitation in any given 

month will reduce yields as indicated by the negative coefficient on the rainfall 

squared term (although it is insignificant for July precipitation). Precipitation in 

September negatively affects crop yields, probably because this is the harvest period; 

additional rainfall is no longer needed for crop growth and, indeed, rainfall could 

disrupt harvesting operations causing some crop loss or cause corn yields to fall as 
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precipitation might damage the crop. Both of these findings are similar to those of 

Chen et al. (2011). 

 
 Figure 2: Fractional Polynomial of GDD, of degree 2 with powers (-.5,-.5) 

 
Figure 3: Fractional Polynomial of GDD, of degree 3 with powers (3, 3, 3)   
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As expected, time variable has a strongly positive impact on corn yields. This 

indicates that farmers were adopting new technologies, whether improved varieties 

of corn, more fertilizer, better or newer equipment, or some other improvement.  

As a final check on our model, we employ the estimated parameters for 

models #4 and #5 in a Monte Carlo simulation (with sampling from distributions 

about the estimated parameters using the estimated standard errors as well as the 

overall standard error of the estimated model) to determine average corn yield for 

each of the 12 districts. These are provided in Figure 4. In the figure, estimated 

yields (Y4) derived from model #4 are close to actual yields (Y), with the exception 

of district 3, and estimated yields (Y5) from model #5 are close to actuarial yields (Y), 

except for districts 3 and 11. Overall, model #4 appears to better predict corn yields 

than the other models. 

 

Figure 4: Actual average (Y) and Monte Carlo simulated yields for models #4 (Y4) and 
#5 (Y5) for the 12 districts   

5. Discussion 

In this study, we investigated the impact of climate variables on corn yields 
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in northwestern China. The most important result is that accumulated heat 

throughout the growing season (as measured by seasonal growing degree days) is 

likely the most important variable influencing corn yields. However, the relationship 

between GDD and yields is subtle and cannot be captured adequately by a linear or 

quadratic functional relation. Rather, the relationship is much more complicated 

and is best determined using a highly nonlinear regression model.  

Not surprisingly, precipitation is also important but adds to crop yields 

primarily during the peak of the growing season, indicating that it is of less import 

than heat units. That is, for our study region, moisture is important, but there is 

likely enough soil moisture that rainfall in mid-summer simply provides a boost to 

yields that is declines rapidly with higher levels of rainfall. Given the size of the 

estimated parameters, district fixed effects and adopted technical advances are also 

important factors explaining crop yields.  

Finally, we find that the two best fitted models capture 80% or more of the 

variation in corn yields. In that case, the estimated regression models could 

potentially be used as a basis for developing weather-indexed insurance products in 

this study area. Given that farmers in western and central China have expressed 

interest in weather-indexed insurance to mitigate weather risks (Turvey et al. 2009; 

Liu et al. 2010), an extension to the current work is to examine how one might use 

estimated crop-yield regression models to construct such financial instruments.  
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